Forests help reduce global warming in more ways than one
https://ift.tt/eGhgzQk
When it comes to cooling the planet, forests have more than one trick up their trees.
Tropical forests help cool the average global temperature by more than 1 degree Celsius, a new study finds. The effect stems largely from forests’ capacity to capture and store atmospheric carbon (SN: 11/18/21). But around one-third of that tropical cooling effect comes from several other processes, such as the release of water vapor and aerosols, researchers report March 24 in Frontiers in Forests and Global Change.
“We tend to focus on carbon dioxide and other greenhouse gases, but forests are not just carbon sponges,” says Deborah Lawrence, an environmental scientist at the University of Virginia in Charlottesville. “It’s time to think about what else forests are doing for us besides just absorbing carbon dioxide.”
Researchers already knew that forests influence their local climates through various physical and chemical processes. Trees release water vapor through pores in their leaves — a process called evapotranspiration — and, like human sweating, this cools the trees and their surroundings. Also, uneven forest canopies can have a cooling effect, as they provide an undulating surface that can bump hot, overpassing fronts of air upward and away. What’s more, trees generate aerosols that can lower temperatures by reflecting sunlight and seeding clouds.
But on a global scale, it wasn’t clear how these other cooling benefits compared with the cooling provided by forests’ capturing of carbon dioxide, Lawrence says.
So she and her colleagues analyzed how the complete deforestation of different regions would impact global temperatures, using data gathered from other studies. For instance, the researchers used forest biomass data to determine how much the release of carbon stored by those forests would warm the global temperature. They then compared those results with other studies’ estimates of how much the loss of other aspects of forests — such as evapotranspiration, uneven canopies and aerosol production — affected regional and global temperatures.